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LETTER TO THE EDITOR 

The velocity dependence of inter-soliton forces 

G A Ringwood 
Department of Mathematics, University of Durham, UK 

Received 27 January 1981 

Abstract. A simple method of calculating the force between extended particles reveals the 
velocity dependence of inter-soliton forces in the sine-Gordon model. 

The only definition of force, the rate of change of momentum, is used herein to find the 
force between solitons in the sine-Gordon model. This method is more quantitative 
than that of Rubinstein (1970) and more dynamically revealing than that of Perring and 
Skyrme (1962), as elaborated by Rajaraman (1977), or that of Troost as extended by 
Hsu (1980). The method described by Rosen and Rosenstock (1952) will be recapitu- 
lated here in the context of the sine-Gordon model. 

The familiar, rescaled, Lagrangian density 2 for the model is 

$gC””a,(ba,cp +(cos 4 - 1) 

g””a,4aV4 +sin 4 = 0 

where g,, = diag (1, -1). The solutions of the corresponding wave equation 

(1) 

which will be of interest here are as follows. 
(i) The single-soliton solution 

4s = 2JI[-y(x - u t ) ]  

where JI is Lobachevskiy’s angle of parallelism (Gradshteyn and Ryzhik 1965, p 43), U 
is the velocity and y the Lorentz factor (1 - u ) , The antisoliton solution, 4g, is the 
negative of the soliton solution. 

(ii) The soliton-soliton scattering solution 

2 -1/2 

q5ss = 4 tan-’ [ u  sinh (yx)/cosh (uy t ) ]  

which has the limiting forms 

+ 4 s [ y ( x  - - ut ) ]  + 4 S [ Y ( X  + + 4 1  as t + -00, 

+ 4 s [ y ( x  - 6 + ut11 + 4 s [ y ( x  + - ut)l 
4 s s  

as t+m,  

where S = (In u ) / y  < 0. 
(iii) The soliton-antisoliton scattering solution 

i S s  = 4 tan-’ [sinh ( u y t ) / u  cosh ( y x ) ]  
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which has the limiting forms 

+4s[y(x -8  -vt)l+4s[Y(x + a  +ut)] 

+ 4 s [ Y ( x - S + v t ) l + 4 s [ Y ( x + S - v t ) l  as t +m.  

as t + -CO, 
4 SS 

The bound state of the soliton and antisoliton, the breather mode, is obtained from (iii) 
by the replacement of 21 with iu .  

To find the inter-soliton force, use will be made of the energy-momentum tensor 
density 

T'", = 4,ya2?/aqh9, - ~9'"~2? where 4," = 

This is conserved by virtue of the wave equation (1). The momentum in a spatial 
interval (a, b )  is 

b 

PI:= la dxTo' 

and the force on the spatial interval (rate of change of momentum) is doJabdxTol= 
-T1llf: by the conservation of the energy-momentum tensor. 

To find the force on a soliton, it would be desirable to take an interval of fixed size 
about the soliton centre, but in general for multisoliton solutions this is inexpedient. (A 
possibility is to take the interval at half peak height.) To avoid these complications for 
two solitons we will take centre of mass coordinates. The momentum of one soliton will 
be PI!, and of the other Pi? = -PI-,. The force on the one soliton will be -T"/!, and 
on the other -T1'l? = T'lIOm. This interpretation of momentum and force is like the 
situation of point particle centre of mass scattering. When PI!, is positive this will 
describe an incoming soliton, and when Plym is negative an outgoing soliton. Although 
the force is not prescribed in an explicitly Lorentz-invariant manner, incoming and 
outgoing, left and right are preserved by Lorentz transformations. 

For the soliton-soliton solution (ii) the coordinates are already the centre of mass 
coordinates, and the momentum 

0 

PsslOm = -807 tanh ( ~ y t )  

is incoming for t < 0 and outgoing for t > 0. The force 

Fss= - 8 2 1 ~ y ~ / ~ o s h ~  (vyt), 

which is repulsive for all t, has a limiting form 

Fss+ - 8 v 2 y 2  exp (-2uyjtl) as It( + 00. 

It is clear that the above procedure gives the force as a function of time and not the ill 
defined soliton position, but as /ti + CO the soliton separation d becomes distinct, 
d + 2(21/tl- S), and so 

Fss+ -8-y' exp (--yd) a s d + m ,  

showing the velocity dependence of the limiting form of the force. As v + 0 the force 
tends to -8 exp (-d), which apart from the numerical factor agrees with the static 
behaviour found by previous authors. 

For the soliton-antisoliton solution (iii) (again already in centre of mass) 

P S s l O m =  -4217 sinh (2vyt)/[sinh2 (vyt)+u2] 



Letter to the Editor L201 

is incoming for t < 0 and outgoing for t > 0. The force is more complicated than for 
soliton-soliton scattering: 

Fss = 8u2y2[sinh2 (uyt) - u 2  cosh (2uyt)]/[sinh2 (uy t )  + u2]* ,  

for which the limiting form 

Fss + 8 exp (-7d) a sd+co  

is attractive. 

are, as would be expected, oscillatory. 
It can easily be seen that the half momentum and the force for the breather mode 
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